Mark Scheme

June 2006

1(a)(i)	$[Force] = MLT^{-2}$	B1		or [Energy]= $M L^2 T^{-2}$
	$[Power] = [Force] \times [Distance] \div [Time]$			
	= [Force] $\times LT^{-1}$	M1		or [Energy] $\times T^{-1}$
	$=ML^2T^{-3}$	A1		
			3	
(ii)	$[RHS] = \frac{(L)^3 (LT^{-1})^2 (ML^{-3})}{(ML^{-3})}$	B1B1		For $(LT^{-1})^2$ and (ML^{-3})
	$ML^2 T^{-3}$	M1		Simplifying dimensions of RHS
	= T	A1		
	[LHS] = L so equation is not consistent	E1		With all working correct (cao)
			5	SR ' L = $\frac{28}{9}\pi$ T, so inconsistent '
				can earn B1B1M1A1E0
(iii)	[RHS] needs to be multiplied by T^{-1}			
(,	which are the dimensions of u			
	$\frac{28\pi r^3 u^3}{r^3} c$			
	Correct formula is $x = \frac{26\pi T - \mu - \rho}{\rho P}$	A1 cao		RHS must appear correctly
			3	
	OR $x = k r^{\alpha} u^{\beta} \rho^{\gamma} P^{\delta}$			
	M1			Equating powers of one
	$\beta = 3$ A1			dimension
	$28\pi r^3 u^3 \rho$			
	$x = \frac{9P}{9P}$			
(b)(i)	Elastic energy is $\frac{1}{2} \times 150 \times 0.8^2$	M1		
	= 48 J	Δ1		Treat use of modulus
		/ \ 1	2	$\lambda = 150 \text{ N}$ as MR
(ii)	In extreme position.			
	length of string is $2\sqrt{1.2^2 + 0.9^2}$ (= 3)	B1		for $\sqrt{1.2^2 + 0.9^2}$ or 1.5 or 3
	elastic energy is $\frac{1}{2} \times 150 \times 1.4^2$ (=147)	М1		allow M1 for $(2 \times) \frac{1}{2} \times 150 \times 0.7^2$
	By conservation of energy.			Equation involving EE and KE
	$147 - 48 = \frac{1}{2} \times m \times 10^2$	M1 Δ1		
	Mass is 1.98 kg			
		A1	F	
			C	

Mark Scheme

June 2006

2 (a)(i)	Vertically, $T \cos 55^\circ = 0.6 \times 9.8$ Tension is 10.25 N		M1 A1	2	
(ii)	Radius of circle is $r = 2.8 \sin 55^\circ$ (= 2.294)		B1		
	Towards centre, $T \sin 55^\circ = 0.6 \times \frac{v^2}{2.8 \sin 55^\circ}$		M2		Give M1 for one error
	OR $T \sin 55^\circ = 0.6 \times (2.8 \sin 55^\circ) \times \omega^2$ $\omega = 2.47$ $v = (2.8 \sin 55^\circ) \omega$	M1 M1			or $T = 0.6 \times 2.8 \times \omega^2$ Dependent on previous M1
	Speed is 5.67 m s^{-1}		A1	4	
(b)(i)	Tangential acceleration is $r \alpha = 1.4 \times 1.12$ $F_1 = 0.5 \times 1.4 \times 1.12$ = 0.784 N		M1		
	Radial acceleration is $r \omega^2 = 1.4 \omega^2$ $F_2 = 0.5 \times 1.4 \omega^2$		M1		
	$= 0.7 \omega^2 \mathrm{N}$		A1	4	SR $F_1 = -0.784$, $F_2 = -0.7\omega^2$ penalise once only
(ii)	Friction $F = \sqrt{F_1^2 + F_2^2}$ Normal reaction $R = 0.5 \times 9.8$		M1		
	About to slip when $F = \mu \times 0.5 \times 9.8$ $\sqrt{0.784^2 + 0.49\omega^4} = 0.65 \times 0.5 \times 9.8$		M1 A1 A1		For LHS and RHS Both dependent on M1M1
	<i>ω</i> = 2.1		A1 cao	5	
(iii)	$\tan \theta = \frac{F_1}{F_2}$		M1		Allow M1 for $\tan \theta = \frac{F_2}{F_1}$ etc
	$=\frac{0.764}{0.7 \times 2.1^2}$		A1		
	Angle is 14.25°		A1	3	Accept 0.249 rad

3 (i)	$T_{\rm AP} = \frac{1323}{3} \times 2 \ (= 882)$	B1	
	$T_{\rm BP} = \frac{1323}{4.5} \times 2.5 (=735)$	B1	
	$T_{AB} - mg - T_{BB} = 882 - 15 \times 9.8 - 735 = 0$		
	so P is in equilibrium		
		3	
	OR $\frac{1323}{3}(AP-3) = \frac{1323}{4.5}(BP-4.5) + 15 \times 9.8$ B2		Give B1 for one tension correct
	AP + BP = 12 and solving, $AP = 5$ E1		
(ii)	Extension of AP is $5 - x - 3 = 2 - x$		
	$T_{\rm AP} = \frac{1323}{3}(2-x) = 441(2-x)$	E1	
	Extension of BP is $7 + x - 4.5 = 2.5 + x$	B1	
	$T_{\rm BP} = \frac{1323}{4.5}(2.5+x) = 294(2.5+x)$	B1	
		3	
(iii)	$441(2-x) - 15 \times 9.8 - 294(2.5+x) = 15\frac{d^2x}{dt^2}$	M1 A1	Equation of motion involving 3 forces
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -49x$	M1	Obtaining $\frac{d^2x}{dt^2} = -\omega^2 x$ (+c)
	Motion is SHM with period $\frac{2\pi}{\omega} = \frac{2\pi}{7} = 0.898 \text{ s}$	A1 4	Accept $\frac{2}{7}\pi$
(iv)	Centre of motion is AP = 5 If minimum value of AP is 3.5, amplitude is 1.5 Maximum value of AP is 6.5 m	B1 1	
(v)	When $AP = 4.1, x = 0.9$		
	Using $v^2 = \omega^2 (A^2 - x^2)$	M1	
	$v^2 = 49(1.5^2 - 0.9^2)$	A1	
	Speed is 8.4 m s^{-1}	A1 3	Accept ±8.4 or -8.4
	$OR x = 1.5 \sin 7t$		Or $x = 1.5 \cos 7t$
	When $x = 0.9$, $7t = 0.6435$ $(t = 0.0919)$		or $7t = 0.9273$ ($t = 0.1325$)
	$v = 7 \times 1.5 \cos 7t$ M1		or $v = -7 \times 1.5 \sin 7t$
	$=10.5\cos(0.6435)$ A1		$= (-) 10.5 \sin(0.9273)$
	= 8.4 A1		

(vi)		M1	For $\cos(\sqrt{49} t)$ or $\sin(\sqrt{49} t)$
	$x = 1.5 \cos 7t$	A1	or $x = 1.5 \sin 7t$ M1A1 above can be awarded in (v) if not earned in (vi)
	When $1.5 \cos 7t = 0.5$	M1	or other fully correct method to find the required time e.g. $0.400 - 0.224$ or
	Time taken is 0.176 s	A1 4	0.224 - 0.049 Accept 0.17 or 0.18

4 (i)	$\int \pi y^2 dx = \int_1^4 \pi x dx$ = $\left[\frac{1}{2}\pi x^2\right]_1^4 = 7.5\pi$ $\int \pi x y^2 dx$ = $\int_1^4 \pi x^2 dx = \left[\frac{1}{3}\pi x^3\right]_1^4$ (= 21 π) $\bar{x} = \frac{21\pi}{7.5\pi}$ = 2.8		M1 A1 M1 A1 M1 A1 6	π may be omitted throughout
(ii)	Cylinder has mass $3\pi \rho$ Cylinder has CM at $x = 2.5$ $(4.5\pi \rho)\overline{x} + (3\pi \rho)(2.5) = (7.5\pi \rho)(2.8)$ $\overline{x} = 3$		B1 B1 A1 E1 5	Or volume 3π Relating three CMs (ρ and / or π may be omitted) or equivalent, e.g. $\overline{x} = \frac{(7.5\pi \rho)(2.8) - (3\pi \rho)(2.5)}{7.5\pi \rho - 3\pi \rho}$ Correctly obtained
(iii)(<i>A</i>)	Moments about A, $S \times 3 - 96 \times 2 = 0$ S = 64 N Vertically, $R + S = 96$ R = 32 N		M1 A1 M1 A1 4	Moments equation or another moments equation Dependent on previous M1
(<i>B</i>)	Moments about A, $S \times 3 - 96 \times 2 - 6 \times 1.5 = 0$ Vertically, $R + S = 96 + 6$ R = 35 N, $S = 67$ N OR Add 3 N to each of R and S R = 35 N, $S = 67$ N) M1 A2	M1 A1 A1 3	Moments equation Both correct <i>Provided</i> $R \neq S$ Both correct